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Owing to solute redistribution by a liquid phase analogue of diffusion-induced grain-boundary 
migration metastable and anti-phase domain boundary-bearing tetragonal (t') phase was seen 
to occur in the cubic (c) matrix grain of sintered (1 400~ 2 h) and furnace-cooled yttria- 
partially stabilized zirconia (Y-PSZ) specimens (TZ3Y + 12Y-PSZ in molar ratios of 4: 1, 1 : 1 
and 1:4). In contrast to that formed by rapid cooling, t'-phase formed by slow cooling shows 
no deformation accommodation twins. Subsequent ageing at 1100~ for up to 240h caused 
the formation of finely tweed (c) and tetragonal (t) assemblages at the expense of coarse 
tweed t'-phase in the 12Y-PSZ grains. The absence of secondary deformation twins in the 
t'-phase formed by slow cooling is discussed. 

1. Introduction 
High solute and anti-phase domain boundary (APB)- 
bearing tetragonal phase, which does not transform 
martensitically to the monoclinic phase, has been 
observed in yttria-partially stabilized zirconia (Y-PSZ) 
and designated t'-phase, to differentiate it from the 
equilibrium t-precipitate in the cubic (c) matrix [1-3]. 
In addition to the primary t'-twin variants, secondary 
fine { 1 0 1 } deformation twins have been recognized in 
fine-grained polycrystals [4] and in plasma-sprayed 
materials [5]. It is generally believed that t'-phase 
forms by rapid cooling from the c-phase of suitable 
solute content (locus between Co* and the univariant 
line of t/c + t) ([4] and literature cited therein) and the 
transformation was a displacive, thermal dissipation- 
related type I-4]. The c-t' transformation was also 
found in the c-matrix of a two-phase alloy of Y-PSZ 
[6, 7]. The slowly cooled single-crystal two-phase 
alloy (8 wt % Y203) heated at 1600~ for 50 h also 
shows APB-like features in the matrix which are 
similar to those of t'-phase, although tweed c + t array 
is also a likely interpretation [6]. Chemical inhomo- 
geneity commonly occurs in sintered PSZ due to the 
solute redistribution on approaching equilibrium [8], 
or due to the dissolution of other alloying elements, 
e.g. Ni2A1Ti I-9, 10] and NiA1 [9]. The c-phase of a 
solute content suitable for the formation of t'-phase 
may possibly occur in these sintered Y-PSZ and affect 
the transformation toughening effect. Here the forma- 
tion of t'-phase in a solute redistributed c-matrix of the 
original Y-PSZ powder (12 wt % Y203) sintered at 
1400~ with TZ3Y (3 mol % Y203) additives and 
slowly cooled, is reported. The subsequent micro- 

structure development on ageing at 1100 ~ was also 
studied. 

2. Experimental procedure 
Powder mixtures of TZ3Y (3 mol% Y203, Toyo 
Soda, Tokyo, Japan) and 12Y-PSZ (12 wt % Y203, 
Zircar Products Inc., USA) in molar ratios of 4: 1, 1 : 1 
and 1:4, were die-pressed (100MPa), sintered at 
1400~ for 2 h and cooled to room temperature 
(--~ 15 min from 1400 to 1200~ then about 4 h to 
25 ~ in an open furnace. The sintered discs were 
subjected to ageing at l l00~ for 94, 120 and 240 h 
and cooled in the same furnace. Scanning electron 
microscopy (SEM, Jeol, JSM35CF instrument at 
25 kV) coupled with energy dispersive X-ray (EDX) 
analysis was used to analyse the grain size and qual- 
itative composition. The fired discs were analysed by 
X-ray diffraction (CuKr 35 kV, 25 mA) for phase 
identification. Step scanning was also carried out with 
a diffractometer using CuK0t radiation (35 kV, 25 mA, 
step size 0.03 ~ fixed counts 30 sec) over two ranges of 
20 values covering the { 1 1 1 } and {4 0 0} diffraction 
peaks of zirconia, the zirconia phases being indexed as 
a slightly distorted version o[ the c-fluorite unit cell. 
The {400} peaks were deconvoluted assuming indi- 
vidual gaussian peaks for the zirconia phases. The 
integrated peak areas were then converted to molar 
fractions of zirconia phases using the formulae given 
by Miller et al. I-3]. Thin sections prepared from 
sintered discs were ion-milled and studied by trans- 
mission electron microscopy (TEM, Jeol-200CX in- 
strument operating at 200 kV). 

* C O designates the intersection point of the free energy curves (temperature against composition) of c- and t-ZrO 2 phase. 
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3. Results 
3.1. As-sintered (1400~ 2 h) 
Regardless of the amoun t  of TZ3Y added, the as- 
sintered samples contained larger 12Y-PSZ and t- 
zirconia (TZ3Y) grains (Fig. 1) which is similar to the 
b imodal  grain-size distr ibution in the sintered TZ3Y 
with added M g O  [11]. Zirconia phases of t, c and m 
symmetry  were identified by X-ray diffraction from 
the as-fired discs. Because grinding causes an appreci- 
able change in the content  of  m-phase, some t-phase 
was considered to be transformable rather than 
nont ransformable  t '-phase. T E M  observation,  how- 
ever, indicates the presence of f -phase  (Fig. 2a) with 
characteristic APBs when some 12Y-PSZ grains were 
imaged with the {1 1 2} diffraction spot. Most  of  the 

Figure 1 Secondary electron image of as-sintered (1400 ~ 2 h) and 
slowly cooled specimen (TZ3Y: 12Y-PSZ = 1:4). 

Figure 2 Transmission electron micrograph of large 12Y-PSZ grains: (a) dark-field image (g = { 1 1 2}) of t'-variant showing A PBs, (b) bright- 
field image of tweed c + t, same specimen as Fig. 1. 

Figure 3 Dark-field image (g = {2 1 1}) of nearly 100% t + t'-grain showing APB (arrow) in variants of primary twin (a to c), (d) SAD pattern 
(Z = [1 1 1]), same specimen as Fig. 1. 
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Figure 4 Dark-field image (g = {1 12}) of misfit dislocation (arrow) 
at semicoherent interface of coalesced tweed grain and t-grain, same 
specimen as Fig. 1. 

12Y-PSZ grains show tweed contrast (Fig. 2b) due to 
the precipitation of t-precipitates in the c-matrix. Oc- 
casionally, domain-bearing t' variants filling nearly 
the whole 12Y-PSZ grain were observed (Fig. 3) indic- 
ating c-t' transformation has occurred in the c-matrix. 
Note that the t'-phase has characteristic APB in con- 
trast to the APB-free t-grain. The [1 1 1] SAD patterns 
were used to distinguish t'-phase from c-phase [67, 
and are also useful to distinguish t'-phase from o- and 
m-phases which may have APB-like features in Y- 
PSZ, (Mg, Y)-PSZ and possibly in Mg-PSZ systems 
[12]. The semicoherent boundary between tweed 
grains and t%rains indicates coalescence has occurred 
(Fig. 4). A glassy phase at the grain boundary and 
grain corners indicates the occurrence of eutectic 
melting (Fig. 5). 

3.2. Postsintering ageing (11 O0 ~ for 94, 120 
and 240 h) 

The corrugated grain boundary of the tweed grain 
(Fig. 6) and the incorporation of t-zirconia grains 
within the tweed grain forming a semicoherent inter- 
face were commonly observed in aged specimens re- 
gardless of ageing time and the amount of TZ3Y 
added (Fig. 7). Some APB in the tweed grain survived 
the early ageing treatment; however, the variant width 
and domain size were significantly smaller than those 

Figure 5 Bright-field image showing glassy phase (arrow) of the 
same specimen as Fig. 1. 

Figure 6 Dark-field image (g = {020}) showing corrugated grain 
boundary of a tweed grain, aged at 1100 ~ for 120 h and slowly 
cooled (TZ3Y: 12Y-PSZ = 1:4). 

of the as-sintered specimens. Upon ageing, t'-phase 
decomposed into lower solute-bearing t-phase and 
higher solute-bearing c-phase; however, the decom- 
position reaction was not complete for 120 h ageing at 
1100 ~ Tweed grains similar to that of as-sintered 
specimens were still observed for ageing up to 240 h; 
however, inhomogeneity was indicated by the patches 
showing coarse and fine tweed (about 20 to 30 nm in 

Figure 7 Transmission electron micrograph showing incorporation of a t-grain into a tweed grain: (a) bright-field image, (b) dark-field image 
(g = {211}), same specimen as Fig. 6. 
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transformation has probably occurred in TZ3Y grain 
during cooling from 1100~ (Fig. 10). 

3.3. EDX analysis 
SEM-EDX analysis of the as-sintered specimens indic- 
ates the tweed grain has a significantly higher count 
ratio of Y/Zr than for the t-grain, and a composition 
variation was detected near the grain boundary. The t- 
precipitates and the incorporated t-grain, caused in- 
terference with SEM-EDX and STEM-EDX analyses 
on the fine or coarse tweed array of aged specimens; 
however, a higher count ratio of Y/Zr is still obtained 
for tweed grain than for t-grain. 

Figure8 Dark-field image (g = {21 1}) of tweed grain showing 
coarse tweed t'-phase and fine tweed c + t array in a specimen aged 
at 1100 ~ for 240 h and slowly cooled (TZ3Y: 12Y-PSZ = 4:1). 

size) regions (Fig. 8) which probably represent the 
retained t'-phase and the newly formed c + t phase 
assemblages, respectively. Growth of these (c + t + t') 
grains by the capillarity effect was indicated by the 
curvature of the grain boundary (Fig. 9). Some m- 
grains were found in aged specimens, indicating t -m 

Figure 9 Dark-field image (g = { 1 12}) showing coarsened 
c + t + t' grain in the same specimen as Fig. 8. 

Figure 10 Bright-field image of m-grain in the same specimen as 
Fig. 8. 

4. Discussion 
4.1. Solute redistribution by sintering 
The domain size (50 to 60 nm) within each t' plate of 
as-sintered specimens seems independent of zirconia 
grain size, and the domain size of 50 nm corresponds 
to C o of 5 tool % Y203 according to the relationship 
of domain size and yttria content in Y-PSZ [13]. This 
indicates the 12Y-PSZ (6.9 mol %Y203)  grain has 
been modified to a lower solute content during 
sintering. It is likely that the solute content of the c- 
matrix in the original Y-PSZ powder was lowered 
during sintering at 1400 ~ due to its mixture with 
solute-poor TZ3Y, so that transformation to f-phase 
by cooling through To (about 1100 to 1200~ see 
locus of Co-temperature in Figs 1 and 2 of [4]) was 
allowed. Because slow cooling retains t'-phase, the 
t ' -c  + t transformation requires an incubation time as 
shown by ageing the plasma-sprayed Y-PSZ [5]. The 
semicoherent interface containing misfit dislocations 
between the tweed grain and the t-grain suggests that 
the solute redistribution proceeds by diffusion-in- 
duced grain-boundary migration (DIGM) [14] in ad- 
dition to the capillarity effect. The glassy phase at 
grain boundary and triple junctions or grain corners 
further suggests that a liquid-phase analogue of 
DIGM [15] may also occur. 

4.2. Decomposition of t'-phase by ageing 
Postsintering ageing at l l00~ caused the decom- 
position of t'-phase into equilibrium c + t phase as- 
semblages regardless of the amount of TZ3Y added; 
however, the decomposition was not complete for up 
to 120 h because domain-like features were retained in 
the coarse tweed region. The fine tweed region of 1~0 h 
sample and almost the whole tweed grain of the 240 h 
aged specimen have a tweed array similar to that 
observed by Lanteri et al. [-6]. The fine tweed array is 
approximately 20 to 30 nm in aged specimens. The 
locus of C o at 1100 ~ is about 8.5 wt % (4.8 tool %) 
Y203 [-4]. According to the relationship between 
domain size and solute content 1-13], the anti-phase 
domain size is larger than 50 nm if the c-phase of the 
Y20 3 content of less than 8.5 wt % transforms into 
the t'-phase at To lower than the ageing temperature 
of 1100 ~ It follows that the t'-phase is a relic rather 
than a decomposition product t'-phase newly formed 
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from a non-equilibrium and ZrO2-rich (between Co 
and t/c + t univariant at a temperature slightly lower 
than ll00~ c-phase. It is likely that the newly 
formed c-phase at 1100 ~ has a solute content within 
the locus of Co and the c/c + t univariant line of Heuer 
et al. [-4], hence no c-t' transformation occurred dur- 
ing cooling. 

4.3. Characteristics of t'-phase formed by slow 
cooling 

The tweed array in the present aged specimens is 
similar to that of the two-phase alloy single-crystal Y- 
PSZ (8 wt % Y203) heated (1600 ~ 50 h) and slowly 
cooled [6]. The tweed arrays thus formed were inter- 
preted either as t'-phase or equilibrium c + t phase 
assemblages [6]. The slowly cooled Y-PSZ specimens 
sintered at 1400~ however, show unambiguous 
evidence of t'-phase (Fig. 2a). The t'-phase formed by 
slow cooling has slightly different morphology com- 
pared to the quenched phase [-4, 5, 13]. The t'-ZrO2 
is always characterized by twin variants containing 
APBs which arise because of the lowering of symmetry 
during transformation ([4] and literature cited there- 
in). In addition to the primary t'-twin variants, second- 
ary fine { 1 0 1) deformation twins were recognized in 
fine-grained polycrystals [-4] and in plasma-sprayed 
materials [-5] but only rarely in skull-melted single 
crystals. These secondary t' twins were attributed to 
deformation due to the tetragonality of t'-phase. No 
such fine twins were observed in the present samples 
indicating quenching was probably required to induce 
martensitic-like transformation so that deformation 
accommodation twins (secondary) can form. It is less 
likely that the formation of the secondary t'-twins 
depends on Co, because martensitic features were 
observed in arc-melted Y-PSZ of various composi- 
tions (3 to 5 tool % YzO3) [13]. A two-step develop- 
ment of t'-phase in arc-melted ZrO2-Y20 3 alloys has 
been suggested: APBs are formed initially and plate- 
like or lenticular features form later [13]. It is likely 
that only the first step occurred during slow cooling of 
the present sintered or aged Y-PSZ specimens so that 
only APB features were formed. 

5. Conclusions 
1. Metastable t'-phase was formed in solute-re- 

distributed Y-PSZ (12Y-PSZ with TZ3Y addition in 
molar ratios of 4 : 1, 1 : 1 and 1 : 4) after sintering at 
1400 ~ and slowly cooling. 

2. Anti-phase domain boundaries (APB) but no 
deformation twins were found in the t'-phase of the 
slowly cooled specimen. 

3. Subsequent ageing at l l00~ for up to 240 h 
caused the formation of fine tweed c- and t-phase 
assemblages at the expense of coarse tweed t'-phase in 
the 12Y-PSZ grain. 
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